Exploring the Relationship Between Childhood Obesity, Asthma, and Metabolic Disease LESLEY COTTRELL, PHD WEST VIRGINIA UNIVERSITY, SCHOOL OF MEDICINE, DEPARTMENT OF PEDIATRICS

Why Childhood Obesity, Asthma, and MetabolicDisease?

Significant health issues for state and nation

- National prevalence among children (7 million children under 18 years; 9%)
- West Virginia prevalence among children (43,465 children; 14.7%)
- Parallel rise in childhood obesity and asthma rates
 - Asthma prevalence has doubled among children in the last two decades
 - Obesity prevalence has tripled among children in the last two decades
- Similar patterns
 - Both are more prevalent among younger boys but become greater among girls in adolescence

Associations

Obesity and asthma are related

- Asthmatics are more likely to become overweight/obese over time
- Obese children are more likely to develop asthmatic symptoms
 - Obese children are less effected by select asthmatic treatments

Which comes first?

- Obesity is central but which comes first in most instances is unknown
- How is obesity, asthma, and metabolic disease related?
 - Obesity as central hub these illness are related to dyslipidemia, cardiovascular risk factors

Literature Gaps

- How are asthma, obesity, and metabolic function associated with one another across a spectrum of children?
 - Most studies are conducted using obese child samples or only asthmatics
- Is childhood obesity always the central support for the triad, if it exists?
 - Studies prior to our project did not control for obesity in analyses. It was always included as an independent variable of models
- Are there developmental differences associated with puberty and other physiological milestones that should be considered?
 - Most studies have used adolescent or young adult samples

Initial Research Questions

Phase | Project

- Examine the relationship between asthma and body mass in children in a wide spectrum sample
- Test whether early derangement in lipid and glucose metabolism is independently associated with increased risk for asthma

Metabolic Abnormalities in Children with Asthma

Lesley Cottrell¹, William A. Neal¹, Christa Ice¹, Miriam K. Perez¹, and Giovanni Piedimonte

¹Department of Pediatrics and Pediatric Research Institute, West Virginia University School of Medicine, Morgantown, West Virginia

Retreme: Childrood arithms and obsails have teached epidents proportions worksholde, and the latter is also centrifuting to incounting rate of related metabolic disorders, usch as diabeter. Yet, the relationship between software, obsails, and alensemal lipid and glacose metabolism is not well understood, nor has it been adequately acquired in thildren.

Objective: To analyze the relationship between asthma diagnosis and body mass in children across the entire range of usight percentile categories, and to text the hypothesis that early derangement in lipid and glucose metabolism is independently associated with increased risk for asthma.

Mithoit: Cross-sectional analysis of a representative sample of public school children from a stationatide community-based scorening program, including a total of 17,994 children, 4 to 12 years of 4, living in predominantly nural Wint Wignia, and enrolled in kindergarten, second, or Hith grade classrooms.

Measurements and Moin Rasks: We enalyzed demographics femily history, moles exposure, parvert-reparted advector daparesit, beely man index: evidence of acertification and the second second second veloping insults next and facting series light parties inducting total choixtened, low-denvity ispeptotein choixtened, high-density total choixtened, low-denvity ispeptotein choixtened, high-density ligoprotein choixtened, and trighyceridan. Regulations of their loogimans index percentific, chiftene diagnossed with asthema were mere likely than chiftenew thosa attaines to have higher trighyceridial-levels and anothesis nightcase after controlling for use differences and smelle exposure.

Conclusion: This study provides the first set of community-based data linking actions, body mass, and metabolic variables in children. In particular, these findings uniquely describe a stabilized by significant association between actives and abnormal liquid and glucose metabolism beyond body music index anso cations.

 Keywerds: bedy mass index; cardiovascular risk; diabetics; insulin resistance; obesity

Four million children under 14 years of age have been diagnosed with addreas in the United States (1) and the current plotal estimato of antima providence range from loss than 5% to more than 25% (2). Likewise, childhood obesity has reached epidemic proportions worklowide, prompting First Lady Michelle Obuma to march the "Lady Movel" campaign against childhood obusty in

(Received in original form April 17, 2015); acceptative final form September 76, 2013); Sagaratel in part by a grant from the 1th Mathinal Institutes of Health (MCDM DECOM-11). The incoming design and procedures over banded by the Health Magnin Servers of Public Health and the Charde W. Servetian Foundation. Dr. Convent: Preferencement and allow banded in part by grant NREB HE-MORP and Kanda Dave the HM2 Foundation.

Some of the findings reported in this paper were presented at the Internetional Conference of the American Thosacic Society in 2009 (Lin Diego, CA) and 2010 (New Obsam, LA).

Conspondence and sequents for reprints should be addensed to Gouvent Periorement, M.D., Dapateres of Penkinski, Wet Wingson Mainway, M.D., 1995, Nature 1997, Statistical Wetter, 1 Medical Context Dive, P.D. 1995, Statistical Statistics, Wetter Statistics, 1997, Statistical Wetter Dive, P.D. 1996, Statistical Nature, W.M.2005, Coll & Center Spreamonth/Recursture, Model Water & Wetter Wetter, Medical Statistics, Statistical Statistics, Statistical Contexts of Wetter Statistics, Stati

Ann J. Kengar C. R. Carle Mind. Not 2011. pp. 4411–448, 2011. Degrandly Published in Press in DOI: 10.1146/hzers.201004-040030C on https://www.integrandler.17, 2010. Informed address: servers.2020.00181. pp. 3411–3482.

AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

Childhood asthma and obesity have reached epidemic proportions weildwide, and the latter is also contributing to increasing rates of related metabolic doorders, such as diabetes. Yet, the relationship between asthma, obesity, and abnormal kpid and glucose metabolism is not well understood.

What This Study Adds to the Field

This study provides the first set of community-based data indeng softmat, body mass, and metabolic variables in children. In porticular, these findings uniquely describe a significant association between asthma and abnormal lipsi and glucose metabolism beyond body mass index associations.

February 2010 (3). Growing assurances of the impact of weight on chronic disease (4, 5), combined with the ordenee of a parallel trice in both obserity and athem ratics among children, has led many to pointaice a relationship between these pathologies (4–9). However, it remains controversial whether such a relationship is causal or combinated by other factors.

Provious studies of the association between arthma and obesity have focused on the mechanical effects of abdominal fat on respiratory system compliance (7, 8); on the role of specific nutrients, such as antioxidants and saturated fat (8); and on the inflammatory pathways implicated in both conditions (7 10). Much of this literature focuses on obesity as the central hubfrom which complications, such as asthma, cardiovoscular disease, and metabolic syndrome, originate. Perhaps as a result of this bias, most of the studies designed to examine the interactions between childhood asthma and obesity were based on select cohorts of children who are obese. Although this strategy is valuable to identify trends within an at-risk group. new and important information could result from studies looking at larger, more heterogeneous samples of children stratified by body mass. Also, an association between childhood asthma and metabolic risk factors independent of obese body mass has not been studied among children and may identify potential confounding factors.

Among the metalosite conservisities frequently associated with obesity, dyslipidemia and hyperinvalmentia can influence both innote and adaptive defense mechanisms in the respiratory tract. This promoting the expression of multiple potentiarmatory explositions and themothenis, reduced endogenous antitufinematory activity, and increased broachemotor torse (11). Because these events are involved in the publicity polyhophysiology of arrway influenzation and hypermedicity, it is concatrolish that early like abnormalities in lipid or glacose metabolism may contribute to the publicities of asthana in childbool.

The original goal of this project was to analyze the relationship between asthma diagnosis and body mass in a community-

Phase I Participants

CARDIAC Participants from 2007-2008 academic year (n = 17,944)

- kindergarten (4-5 years) n = 6,314
- second grade (7-8 years) n = 5,609
- fifth grade (9-10 years) n = 6,021
- ▶ 49.3% males
- 90.7% Caucasian
- Parental consent and child assent

Phase | Measures

Childhood Obesity

- Body mass index percentile (BMI%)
 - ▶ SECA Road Rod stadiometer
 - ▶ SECA 840 Digital Scale
- Categorical Variable
 - < 5th% underweight</p>
 - ▶ 5th-84.9th% healthy weight
 - ▶ 85.0-94.9th% overweight
 - ▶ 95.0-98.9th% -obese
 - \blacktriangleright 299th% morbidly obese

Phase | Measures

Metabolic Disease

- Acanthosis Nigricans (AN)
 - Neck and axilla hyperpigmented skin rash
 - Associated with insulin resistance and hyperinsulinemia in children (Hud, Cohen, Wagner, Cruz; 1992)
- Dichotomous Variable
 - Present/Absent

Phase | Measures

Childhood Asthma

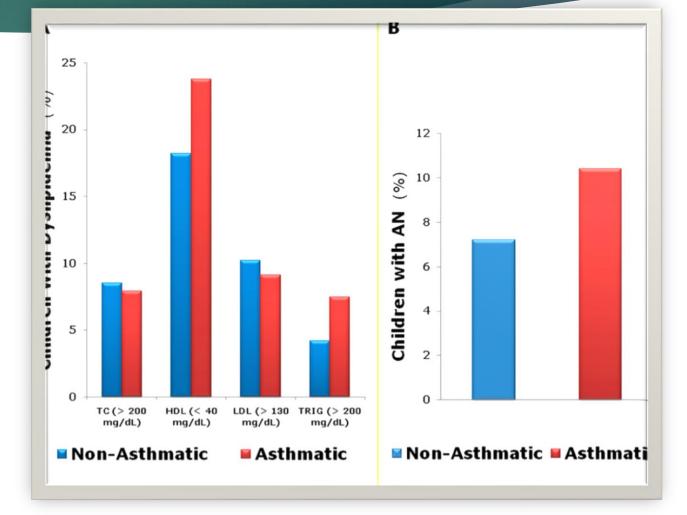
- ► Single item for parent report
 - "Has your child been diagnosed with asthma"
 - Yes/no response

Lipids

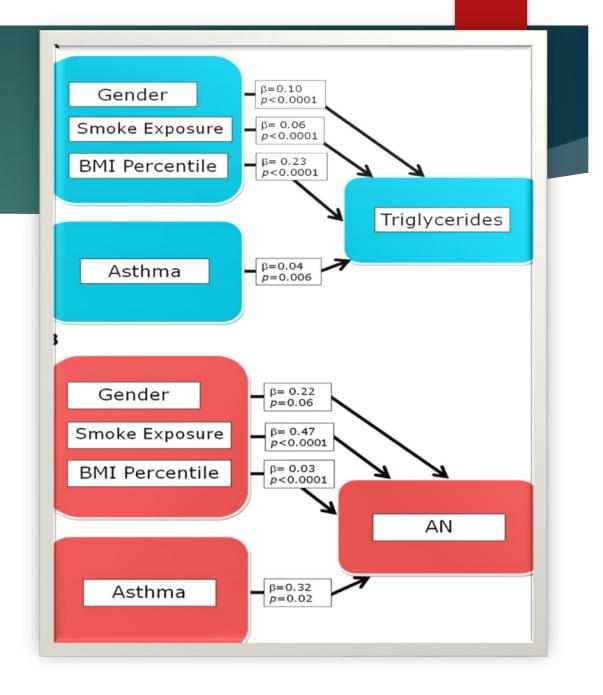
- Fifth grade students only
- ► Total cholesterol, LDL, HDL, Triglycerides

Asthma Prevalence Based on BMI

- ▶ 37.6% were overweight or above
- 1 in 5 children were obese or morbidly obese
- 14% had been diagnoses with asthma
- ► General trend: asthma prevalence rate increased as BMI% increased
- Significantly more obese/morbidly obese children were asthmatic than healthy weight children (p<.001) across grades


Metabolic Variables Based on BMI

Obesity was associated with:


- higher means of total cholesterol, LDL and log-transformed triglycerides
- Iower means of HDL
- Presence of AN was associated with:
 - higher means of triglyercides

Independence from Obesity

- Significant asthmatic effect (p<.01)
- Significant associations between asthma and:
 - triglycerides (p<.01)
 - AN (p<.001)
 - regardless of weight status
 - controlling for sex and smoke
 exposure

- Hierarchical linear regressions illustrated that:
 - asthma associated with hypertriglyceridemia after controls (p<.01)
 - asthma associated with AN after controls (p<.001)

Phase I: Summary Points and Limitations

Summary Points

- Additional evidence of obesity and asthmatic burden in WV among children
- Provides initial evidence for an alternative model without obesity as the central hub but rather, diet as the initiator of asthma-obesity-diabetes triad

Limitations

- "Indirect" assessments/ variables
- Cross-sectional design
- Limited lipid analyses

What Does this Mean?

- Metabolic abnormalities induced by imbalanced diet in childhood may constitute central hub of asthma-obesity-diabetes triad
- Possibly different type of asthma and metabolic abnormalities that are linked directly to asthma without obesity as central structure
- What is the mechanism?
 - Inflammation?

Phase II: The Family Lifestyle Project

Designed to...:

- replicate Phase I analyses with direct, clinical assessments of model variables;
- continue to assess obesity-asthma-metabolic abnormality triad across spectrum of children; and
- explore potential mechanisms supporting asthma-metabolic abnormality association independent of, obesity

Phase II: Assessments

Blood Samples (15 cc total)

- Lipids, glucose, insulin, IgE, Vitamin D, Hemoglobin
- Serum nitrate/nitrite
- GWAS
- Cytokines, NGF, BDNF
- Store serum for future questions

Urine Sample

Nicotine and cotinine

Clinical Assessments

- PFTs
- Exhaled Breathe Condensate (EBC)
- Anthropometrics& DEXA
- History and Physical
- Allergy Testing
- Surveys
 - Demographics
 - Child Health Questionnaire
 - Parental Stress Index
 - Sleep Questionnaire
 - Physical Activity & Diet
 - Executive Function
 - Asthma Control

Phase II: Procedures

Prior to Visit

- Discontinue medication and fast overnight (at least 12 hours before visit)
- Complete series of surveys
- During Visit
 - Check-in, anthropometrics, fasting blood draw, urine collection
 - DEXA
 - History & Physical
 - ► PFTs, EBC
 - Allergy Testing
- After Visit
 - ► Health report mailed to family
 - Health literacy survey

Phase II Participants

178 children

- ▶ 56.8% males
- 85.4% Caucasian
- Positive family hx for diabetes = 42.4%
- Child diagnosed with diabetes = 1.1%
- Mean age = 9.4 years (SD = 1.7)
 - 7-13 years of age included
- Mean BMI% = 67.6 (SD= 30.2)
 - ▶ 2.9% underweight
 - ▶ 53.5% healthy weight
 - ▶ 16.9% overweight
 - ▶ 18.6% obese
 - ▶ 8.1% morbidly obese

Asthma Prevalence

Confirmation Method

- medications
- ► PFT
- prior history
- physical & history

Asthma Prevalence in Sample

- ▶ 102 (57.3%) non-asthmatic
- ▶ 76 (42.7%) asthmatic
- ▶ 36.8% of females; 45.4% of males
- ▶ 42.8% of 7-9 year-olds; 39.0% of 10-12 year-olds

Lipid and Metabolic Abnormalities

% abnormal - fasting lipids

- ▶ 4.5% Total cholesterol (cut off value = 200 mg/dL)
- 2.1% LDL (cut off value = 190 mg/dL)
- 10.1% HDL (cut off value = 39 mg/dL0)
- 2.9% Triglycerides (cut off value = 200 mg/dL)

% abnormal - metabolic function

- 1.2% HOMA IR (cut off value = 5.22 in boys; 3.82 in girls; Kurtoglu et al., 2010)
- 0.6% HbA1C (cut off value = 6.5%; WHO report; 2011)

Asthma and Obesity Association

- ► 3.1% underweight
- ▶ 18.0% healthy weight
- ▶ 9.0% overweight
- ▶ 9.0% obese
- ▶ 3.9% morbidly obese

Significant association between variables (p<.01); non-linear</p>

Obesity, Lipids, and Metabolic Function

Greater BMI% was significantly associated with:

- higher triglycerides (p<.01)</p>
- Iower HDL (p<.001)</p>
- ▶ higher LDL (p<.001)
- higher insulin (p<.001)</p>
- higher HOMA-IR (p<.001)</p>

Note: association with abnormal HbA1c but NS

Asthma, Lipids, and Metabolic Function

Asthmatics were significantly more likely to have:

- elevated triglycerides (p<.05)
- hyperinsulinemia (p<.01)</p>
- abnormal HOMA-IR (p<.01)</p>

Still Independent of Obesity?

- Hierarchical linear regressions controlling for age, gender, and obesity significantly predicted:
 - Triglycerides (p<.05)
 - ▶ Insulin (p<.05)
 - ▶ HOMA-IR, HbA1C not significant

Phase II: Summary Points and Limitations

Summary Points

- Partial replication of the original question using clinical and direct assessments was supported
- Asthma may be directly related to metabolic abnormalities, perhaps through diet but this is not consistent across measures

Limitations

- Despite recruitment strategies, sample includes fewer obese/asthmatics
- Some cut offs are not confirmed for children in literature at this time

Next Steps

- Conduct ROC analyses using different cut offs for metabolic assessments
- Explore inflammatory markers and other variables to begin to detangle differences in metabolic measures
- Explore fatty acids and other nutritional indices from serum to look potential role of diet on triad
- ▶ Use DEXA (on subsample only) instead of BMI% to assess model

Lab Members

WVU

Brian Ansell	Sylvia Cardenas
Rafka Chaiban	Yemir Demirdag
Brad Foringer	Stephanie Grayson
Michael McCawley	Hawley Montgomery
William Neal	Ali Onder
Jan Rapp	Michael Regier
Christa Lilly	Lennie Samsell
Talia Sotomayor	Cheryl Walton

Other Institutions

Greg Hawkins (Wake Forest) Adam Gower (Wake Forest) Srinivas Nagaraj (U of Florida)

References

- CDC. Asthma in West Virginia. Accessed at: <u>www.cdc.gov/asthma/stateprofiles/asthma_in_WV.pdf</u>
- CDC. Asthma Surveillance Data. Accessed at: <u>www.cdc.gov/asthma/asthmadata.htm</u>
- Ogden, Carroll, Kit, Flegal. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. JAMA 2012; 307: 483-490.
- Borrell et al., Childhood obesity and asthma control in the GALA II and SAGE II studies. Am J Respir Crit Care Med 2013; 187 (7): 697-702.
- Matricardi, Gruber, Wahn, Lau. The asthma-obesity link in childhood: open questions, complex evidence, a few answers only. Clin Exp Allergy 2007; 37: 476-484.
- Cottrell, Neal, Ice, Perez, Piedimonte. Metabolic abnormalities in children with asthma. Am J Respir Crit Care Med 2011; 183: 441-448.
- Hersoug, Linneberg. The link between the epidemics of obesity and allergic diseases: Does obesity induce decreased immune tolerance? Allergy 2007; 62: 1205-1213.
- Farah, Kermode, Downie, Brown, Hardaker, et al. Obesity is a determinant of asthma control independent of inflammation and lung mechanics. Chest 2011; 140: 659-666.